f07 — Linear Equations (LAPACK) f07vec

NAG C Library Function Document
nag_dtbtrs (f07vec)

1 Purpose

nag_dtbtrs (f07vec) solves a real triangular band system of linear equations with multiple right-hand sides,
AX=Bor A'X =B.

2 Specification

void nag_dtbtrs (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,
Nag_DiagType diag, Integer n, Integer kd, Integer nrhs, const double ab[],
Integer pdab, double b[], Integer pdb, NagError x*fail)

3 Description

nag_dtbtrs (f07vec) solves a real triangular band system of linear equations AX = B or A’ X = B.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252—1265

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input
On entry: indicates whether A is upper or lower triangular as follows:
if uplo = Nag_Upper, A is upper triangular;
if uplo = Nag_Lower, A is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: trans — Nag TransType Input
On entry: indicates the form of the equations as follows:
if trans = Nag NoTrans, the equations are of the form AX = B,
if trans = Nag_Trans or Nag_ConjTrans, the equations are of the form A7 X = B.

Constraint: trans = Nag_NoTrans, Nag_Trans or Nag_ConjTrans.

4: diag — Nag DiagType Input

On entry: indicates whether A is a non-unit or unit triangular matrix as follows:

[NP3645/7] fO07vec.1

f07vec NAG C Library Manual

if diag = Nag NonUnitDiag, A is a non-unit triangular matrix;

if diag = Nag UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint. diag = Nag_NonUnitDiag or Nag_UnitDiag.

5: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

6: kd — Integer Input

On entry: k, the number of super-diagonals of the matrix A if uplo = Nag_Upper or the number of
sub-diagonals if uplo = Nag_Lower.

Constraint: kd > 0.

7: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

8: ab[dim] — const double Input
Note: the dimension, dim, of the array ab must be at least max(1, pdab x n).

On entry: the n by n triangular matrix A. This is stored as a notional two-dimensional array with
row elements or column elements stored contiguously. The storage of elements a;; depends on the
order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ab[k+ i —j+ (j — 1) x pdab], for i = 1,...,n and
Jj=r1,...,min(n,i+ k),

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ab[i — j+ (j — 1) x pdab], for i = 1,...,n and
j=max(l,i —k),...,i;

if order = Nag_RowMajor and uplo = Nag_Upper,
a;; is stored in ab[j —i + (i — 1) x pdab], for i = 1,...,n and
Jj=r1,...,min(n,i+ k),

if order = Nag_RowMajor and uplo = Nag_Lower,
a;; is stored in ab[k 4 j — i+ (i — 1) x pdab], for i = 1,...,n and
j=max(1,i —k),...,1.
9: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab > kd + 1.

10: bldim] — double Input/Output

Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

f07vec.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07vec

11: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag RowMajor, pdb > max(1, nrhs).
12: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, kd = (value).
Constraint: kd > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

NE_INT 2

On entry, pdab = (value), kd = (value).
Constraint: pdab > kd + 1.

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

NE_SINGULAR

The matrix A is singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham
(1989).

[NP3645/7] f07vec.3

f07vec NAG C Library Manual

For each right-hand side vector b, the computed solution z is the exact solution of a perturbed system of
equations (A + E)x = b, where

|E| < c(k)elAl,
c(k) is a modest linear function of k, and e is the machine precision.

If Z is the true solution, then the computed solution z satisfies a forward error bound of the form
———=2 < ¢(k)cond(A, x)e, provided c(k)cond(A,x)e <1,

where cond(A,) = [[[A7'|A] |zllo/l|]] -

Note that cond(A,z) < cond(A) = |||A7"||A|||l, < koo(A); cond(A,z) can be much smaller than
cond(A) and it is also possible for cond(A”) to be much larger (or smaller) than cond(A).

Forward and backward error bounds can be computed by calling nag_dtbrfs (f07vhc), and an estimate for
Kso(A) can be obtained by calling nag_dtbcon (f07vge) with norm = Nag_InfNorm.

8 Further Comments

The total number of floating-point operations is approximately 2nkr if k < n.

The complex analogue of this function is nag_ztbtrs (f07vsc).

9 Example
To solve the system of equations AX = B, where
—4.16 0.00 0.00 0.00 —16.64 —4.16
A— —2.25 4.78 0.00 0.00 nd B=— —13.78 —16.59
~| o000 58 632 000 * | 1310 -—4.94
0.00 0.00 —4.82 0.16 —14.14 -9.96

Here A is treated as a lower triangular band matrix with 1 sub-diagonal.

9.1 Program Text

/* nag_dtbtrs (£f07vec) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, k, kd, n, nrhs, pdab, pdb;
Integer exit_status=0;
Nag_UploType uplo_enum;
NagError fail;
Nag_OrderType order;

/* Arrays */
char uplo([2];
double *ab=0, *b=0;

#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I,J) ab[(J-1)*pdab + k + I - J - 1]

f07vec.4 [NP3645/7]

f07 — Linear Equations (LAPACK) f07vec

#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]
#define B(I,J) b[(J-1)*pdb + I - 1]
order = Nag_ColMajor;
#else
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I
#define AB_LOWER(I,J) ab[(I-1)*pdab + k + J - I - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f07vec Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("sx["\n] ");
Vscanf ("$1d%1d%1d%*["\n] ", &n, &kd, &nrhs);
pdab = kd + 1;
#ifdef NAG_COLUMN_MAJOR

pdb = n;
#else

pdb = nrhs;
#endif

/* Allocate memory */
if (!(ab = NAG_ALLOC((kd+1l) * n, double)) ||
! (b = NAG_ALLOC(n * nrhs, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file x/
Vscanf (" ' %1s ’'%*[*\n] ", uplo);
if (*(unsigned char #*)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
k = kd + 1;
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = i; j <= MIN(i+kd,n); ++3j)
Vscanf ("$1f", &AB_UPPER(i,j));
b
Vscanf ("$x[*\n] ");
}
else
{
for (i = 1; i <= n; ++1)
{
for (j = MAX(1l,i-kd); j <= i; ++3)
Vscanf ("$1f", &AB_LOWER(i,j));
¥
Vscanf ("sx["\n] ");
}
/* Read B from data file x/
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++j)
Vscanf ("$1f", &B(i,j));
Vscanf ("sx["\n] ");

}

[NP3645/7] f07vec.5

f07vec

/* Compute solution */
fO07vec(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
kd, nrhs, ab, pdab, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7vec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print solution */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,
b, pdb, "Solution(s)", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:

if (ab) NAG_FREE (ab);
if (b) NAG_FREE (b);
return exit_status;

}

9.2 Program Data

fO07vec Example Program Data

4 1 2 :Values of N, KD and NRHS
'L’ :Value of UPLO
-4.16
-2.25 4.78
5.86 6.32
-4.82 0.16 :End of matrix A

-16.64 -4.16
-13.78 -16.59
13.10 -4.94
-14.14 -9.906 :End of matrix B

9.3 Program Results

fO07vec Example Program Results

Solution(s)

1 2
1 4.0000 1.0000
2 -1.0000 -3.0000
3 3.0000 2.0000
4 2.0000 -2.0000

NAG C Library Manual

fO07vec.6 (last)

[NP3645/7]

	f07vec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	trans
	diag
	n
	kd
	nrhs
	ab
	pdab
	b
	pdb
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

